Setting up an ARM-based micro-cluster and running the WRF weather model.
Introduction:

In this paper, we describe the motivation, mechanics, and results of attempting to
build a very small cluster based on commercial off-the-shelf ARM technology, and
then “porting ” and running the WRF weather model in a variety of modes. Our
target system consists of several ARM-based computers, with each node consisting
of two or more ARM cores, interconnected by some sort of standard network. Power
consumption of the ARM systems is of particular interest.

The paper is organized as follows. Section 1 describes the motivation for this
activity. Section 2 details the hardware devices chosen as a basis for the work.
Section 3 describes the effort to set up a functioning system consisting of Operating
System and Compilers, and lists the version of WRF chosen for the work. Section 4
describes the effort required to port and build the WRF weather code. Section 5
describes the results obtained, comparing the performance to a similarly configured
x86_64 “Atom” cluster. Section 6 provides some conclusions and discusses future
work.

Section 1) Motivation

The current High Performance Computing (HPC) market is dominated by x86_64-
type based compute devices. These devices have their roots in the so-called “attack
of the killer micros” which, starting in the early to mid 1990s, supplanted and
effectively removed from the marketplace, the previous generation of “vector”-
based computers, such as those marketed and sold by Cray Research, NEC, Fujitsu,
Hitachi, and others. This was achieved through large clusters of relatively low
power, and inexpensive, x86 devices, which evolved over the last twenty years in to
today’s typical x86_64 chip. This was accompanied by the rise of software to take
advantage of these clusters of devices, such as MPI, and standards such as OpenMP,
to take advantage of the increasing core count of today’s x86_64 offerings.

The current generation of x86_64 devices has moved far from their roots as
“swarms of killer micros,” with the transistor counts of some devices reaching into
the billions. They are relatively expensive ( > $2,000 per processor) power hungry (
> 150 Watts per processor) and complex to program effectively. Note that these
were the identical charges made against the previous generation of Vector
machines, albeit at a different quantum level of cost and power consumption.

The current popular GPGPU devices being investigated for HPC have similar cost
and power issues, while the complexity of programming these devices surpasses
anything previously encountered.

The author speculates whether the current reign of high power, high cost, complex
x86_64/gpu devices is now subject again to another “attack of the killer micros”.



During their ascendancy, the x86_64 devices have adapted and co-opted an
architecture similar in some respects to the old generation of Vector machines.
X86_64 devices support “vectorization” of code. On the face of it, this appears the
same as that on the previous generation of Vector machines. In fact, Compiler issues,
and restrictions regarding ability to vectorize a code are basically identical. There is,
however, a crucial difference. The SIMD employed in the typical 86_64 device does
vectors differently from the previous Vector generation. Modern vectorization is
achieved through the use of extremely wide “vector registers”, mated with floating
point functional units that exactly match this width. These wide registers are
currently going through an explosion, going from 128 bits (i.e. Intel “Harpertown”),
to 256 bits (i.e. Intel “Ivy Bridge”), to 512 bits (i.e. Intel “Xeon PHI”), and, one can
speculate, as far as 1024 bits in the near future.

There are two disadvantages with this approach. The first is, if the code cannot be
vectorized, then increasingly large fractions of available floating point performance
are entirely unavailable to the application in question. In the case of Intel Ivy Bridge,
this fraction is 64 /256 = 1/4 for double precision, and 32/256 = 1/8 for single
precision. That’s only 25% or 12.5% of the rated peak speed of the device. The
second disadvantage is that the ability of the memory subsystems to deliver data
from system memory to the floating point registers/units does not begin to
approach the huge bandwidths that would be required of typical codes. In the case
of the Intel Xeon PHI, for example, simple vectorization is not sufficient to get
performance. For this, it is also required that a given algorithm be “re-factored” to
greatly reduce the memory bandwidth required. For many codes, this may be simply
impossible, regardless if the expertise is available. Even if the expertise does exist,
it's an expensive proposition to embark on a code re-write where the potential
benefits (if any) are impossible to predict beforehand.

The previous generation of Vector machines avoided these two pitfalls by having
modest floating-point unit widths, so that the penalty for non-vector code was not
so severe. An additional, and expensive, feature was the use of “banked” memory,
where successive memory banks, able to be addressed in successive cpu clock
cycles, held successive memory words, allowing for ultra-high-speed memory
bandwidth, capable of supplying data to the floating point functional units in a
manner matching their full capacity requirements. The memory systems of today’s
x86_64 systems, while several orders of magnitude larger, remain relatively limited
in this bandwidth aspect by their rooting in the cheap consumer-commodity class of
devices. The compute capability of today’s x86_64 devices so far outstrips the ability
of the overall system to supply data, that they must be considered fundamentally
imbalanced. As mentioned above, the trend is increasing.

A result of all these x86_64 device limitations is that typical user codes achieve
effective performance in the sub 1% range of the peak theoretical speeds of the
devices. For example, an Intel Ivy Bridge processor may have a peak speed in the
hundreds of Giga-flops, while it is not at all uncommon for codes to be lucky to



achieve performance in the mere hundreds of Mega-flops. There is increasingly less
expertise at the programming level to be able to achieve vectorization, let alone the
ability to refactor codes (if at all possible) to reduce memory bandwidth
requirements.

In light of all the above, the question obviously rises of why continue in this
direction at all? Why not embrace fully the real meaning of “attack of the Kkiller
micros” and re-engage the revolution that initiated the current levels of
achievement in the HPC market?

What would be the shape of new devices to re-energize HPC and bring effective
performance levels back to the hands of the mass of today’s applications and users?
They would be low-transistor-count devices. They would have single width floating-
units. They would be low power. They would be able to be networked. They would
be readily available and cheap.

The device that best fits the above description today is the ARM processor design.
Note that the ARM is not a hardware device itself. It is a design for a processor
device. In fact, it is many designs, all serving particular markets. ARM is ubiquitous
in today’s market, and one can envision quite easily, a vendor building a system with
a network of ARM design-based devices appropriate for HPC. Some companies are
making small steps in this direction.

The motivation for this work is to remove some of the uncertainty of this approach.
To do this, we have chosen to port and run, not a suite of small benchmark codes,
but a full-blown application, in wide use. To make the work as open and free to
discussion as possible, we need a complex application that is completely open-
source. The WRF weather model:
http://www.mmm.ucar.edu/wrf/users/downloads.html meets all the requirements
for this work. We chose version 3.5.1 for the arbitrary reason that it was the most
recent version at the time of this work. (fall, 2013)

We want to explore: how hard is it to setup an ARM system? How hard is to port
code? Does the code work at all? What sort of performance can we get? How does
this compare to x86_647 What does the power usage look like?

Section 2) Choice of Hardware Platform

Our criteria for choosing an ARM platform is that we want at least two nodes, four
would be preferable, it should have a two-core ARM processor on each board, be
able to be networked, and be cheap.

We chose the Pandaboard ES:

www.pandaboard.org



It is based on the Texas Instrument OMAP 4460 ARM-based device, with 2 ARM
cores. Note that the Pandaboard ES and the OMAP 4460 device have many
capabilities of no interest to us in the context of this work. We configure the systems
“headless”, with no access via keyboards, video, or mouse. The only items of interest
to us are the dual core processor, the 1 Gbyte of memory, network interface, and
minimal USB support for a serial console. In production this Serial /USB connection
is not used.

We purchased four Pandaboard ES systems for the work here.
The basic layout of the Pandaboard ES is as follows, as shown in the file:
panda-es-b-manual.pdf

available at www.pandaboard.org
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Figure 1 - OMAP4460 Pandaboard ES Architectural Block Diagram
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To provide power for the 4 boards, we wanted a power supply that was computer-
controllable. With such a power supply, we would be able to read-out the power
usage while running codes, which is of prime interest. We chose the very reasonably
priced Korad KA3005P.
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Section 3) Building a functioning system.

To build our system, we used a base of hardwood plywood about the size of a sheet
of paper. We used four 1/16” stainless steel threaded rods through the mounting
holes of the Pandaboards to create a small “tower” holding the single-board
computers horizontally. The Pandaboards arrive without any heat-sinks on the
cpus, so we purchased some appropriately sized small “self-stick” solid copper
heatsinks to allow for heat dispersal. The Pandaboards are clocked at 700 Mhz,
despite the 1.2 Ghz rating of the OMAP 4460 processor. We use the Korad power
supply set at constant 5 volt output to power the system. We use the same 5 volts to
run two 12 Volt computer-case fans at low speed. This provides a low-level of noise
and sufficient airflow in case of any heating that might occur in the ARM cpus. An
early version of this during bringup can be seen here. Note that the Korad is not yet
being used, only one board is powered up, and a single 12 V fan is in place.



The view from the other side is shown below. Note the copper heatsinks in place on
the cpus, the serial-port adapter being used for bringup, and the SD Digital flash
memory card (4 gbyte) which serves as the “hard drive” of the Pandaboard.
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Pictured below is the final production version of the micro-cluster. The Korad
power supply is in place, there are the two fans for cooling, and we added a small
front panel with toggle switches to control power to each of the 4 boards and 2 fans
on an individual basis.
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In the final configuration used for the reported results, we connect the four 100 Mbit
Ethernet cables into our existing consumer-grade Gigabit switch and network.

Software:



We tried several Linux distributions, before settling on a version (12.03) of
OpenSUSE available at:

https://en.opensuse.org/HCL:PandaBoard

This has the advantage of matching the current version of OpenSUSE on our suite of
systems we use internally, including two Atom-based systems we plan to use for
comparison.

Installation of the Linux software was straightforward, following the instructions at
the OpenSUSE website. We found the 1 Gbyte memory of the Pandaboards too small
for some of the builds we did, so we configured a 1.5 Gbyte swap file on the SD Card
of each board. Home file systems were simply NFS-mounted from our normal
servers.

We also added the following standard packages using yast2:

yast2 --install gcc

yast2 --install gcc-fortran
yast2 --install gcc-c++

yast2 --install gdb

yast2 --install ed

yast2 --install perf

yast2 --install strace

yast2 --install tcsh

yast2 --install rpcbind

yast2 --install nfs-client
yast2 --install xorg-xll-server
yast2 --install xorg-xll-server-sdk
yast2 --install rcs

yast2 --install make

yast2 --install papi

yast2 --install papi-devel
yast2 --install papi-devel-static
yast2 --install xosview

yast2 --install sudo

yast2 --install yast2-network
yast2 --install Modules

yast2 --install man

yast2 --install m4

yast2 --install gmp-devel

yast2 --install mpfr-devel
yast2 --install mpc-devel

This provided all the Compilers, libraries, and utilities for basic application
development for the work described here, and other work to be described in future
reports.



Lastly, for MPI and NetCDF support (needed by WRF), we downloaded and built
from source:

mpich-3.0.4
netcdf-3.6.3

Building mpich for ARM was done simply, and natively, on one of the ARM systems
with the script:

#!/bin/sh

set -x

VERS=mpich-3.0.4

rm -rf ${VERS}

gzip -c¢ -d ${VERS}.tar.gz | tar -xo
cd ${VERS}

export CFLAGS=-g

export LDFLAGS=-g

./configure -prefix=/soft/mpi/mpich-3.0.4 --enable-shared
make

sudo make install

While netcdf required:

#!/bin/sh

set -e -x

rm -rf netcdf-3.6.3

gzip -c¢ -d ../netcdf-3.6.3.tar.gz | tar -xo
cd netcdf-3.6.3

./configure --prefix=/soft/netcdf/3.6.3
make

make check

As can be seen, no exotic options or any special extra effort was required to build
either a working MPI or NetCDF. Similar scripts were used for x86_64. The resulting
libraries were installed in two parallel directories both mounted as “/soft” on our
x86_64 and ARM systems. This allows almost identical scripts to be used for most
uses of the software.



All the effort required to port and build WRF for the ARM cluster is contained in the
following 32-line script. Line numbers have been added to aid the discussion that

follows.
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#!/bin/sh

. /usr/share/Modules/3.2.10/init/sh
module load mpich-3.0.4 netcdf-3.6.3
set -e -x

module list

for i in 1 2 3 4

do

export NETCDF=/soft/netcdf/3.6.3

rm -rf WRFV3 ${i}

mkdir WRFV3 ${i}

cd WRFV3_ ${i}

gzip -¢ -d ../../WRFV3.5.TAR.gz | tar -xo --strip-

components=1

13
14
15
16
17
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19
20
21
22
23
24
25
26
27
28
29
30
31
32

ed arch/configure new.defaults << EOF
g/#ARCH.*gfortran/s/x86 64/armv7l

w

q

EOF

ed external/io_int/makefile << EOF

75

s/;/ -lgomp ;

w

q

EOF

export WRFIO NCD LARGE FILE_ SUPPORT=1
./configure << EOF

s{1}
1

EOF

export J="-j 1"

compile em b wave FCDEBUG=-g
cd ..

done

This script builds the “em_b_wave” WREF test case in the four basic modes that WRF
can build in. They are:

1) Serial mode

2) Shared memory parallel (i.e. OpenMP)
3) Distributed memory parallel (i.e. MPI)
4) Hybrid mode (i.e. MPI with OpenMP



The four modes of compilation correspond to the integer input on line 26 of ${i} to
the configure script invoked on line 25.

At line 6, the list of the four compilation modes, 1, 2, 3,4 is provided. Lines 9-12
create 4 separate copies of the WRF directory correlating to the 4 different
compilation modes. Lines 13 thru 23 reflect the entire amount of work required to
port WRF to ARM. The effort was essentially nil. Line 14 simply changes the string
“x86_64" in the configure_new_defaults file to the string “armv71”, which is the
machine type returned by the uname command. Line 20 adds the gfortran openmp
runtime library, -lgomp, to the library search path in the Makefile, in case it may be
needed.

This WRF build script reflects a stunning lack of any effort to port the code to ARM.
These minor changes were all that was required to port the code to the ARM cluster,
and allow successful runs of the indicated test case. The WRF-supplied “diffwrf”
command was used to verify the results of all four versions of the test cases
compared to the x86_64 versions. The fact that such a complex code as WRF can be
ported and run successfully like this with so little effort is a tribute to the teams at
OpenSUSE, GNU, and WREF. Of course the teams at Texas Instruments, Pandaboard,
ARM and Intel also deserve credit, as well as countless others.

Power control.

We found no useable software for Linux to control the Korad KA3005P power
supply, and so wrote our own. The included manual provided the simple ASCII
protocol to use. We created a simple linux command to provide the functions as
follows:

atomic.site:/home/dpb> korad0
Usage: koradO option [arg]
Where option is one of:

on

off

id

status

vout

iout

vset [volts]

iset [amps]

rcll

rcl2

rcl3

rcl4

save
atomic.site:/home/dpb>



This allowed us to power on/off the cluster, and read out the current while running
test cases. The power switches on the production front power panel of the cluster
allowed us to benchmark the power draw of the fans alone, as well as the cluster in
idle, and various other modes. In short spans, we are able to get power information
at a resolution of 1 second intervals, with the code to control and read the USB-
connected Korad power unit running on a separate system from the ARM cluster.
Longer runs at one-second intervals made the host system unstable, and we found a
time interval of 4 seconds to be the sustainable choice.

We have encountered no system instability or other issues with the ARM cluster,
and found the system, over several months, to be equally as stable as our consumer-
grade network of x86_64 systems.

Section 5) Results

We have compared the performance of the ARM systems described above to an Intel
Atom D510 system with 4 Gbytes running at 1.666 Ghz. We have two such Atom
systems, both connected to the same Gigabit Ethernet network as the ARM systems.
To make appropriate comparisons, we have used the same maximum number of
nodes (2) and the same maximum number of OpenMP threads per node (2) in the
test cases below. Note that we did not measure the power consumption of the Atom
systems, but believe them to be approximately 20 watts per node.

First, some basic ARM power measurements. Note that except for the fan-only data,
all the power graphs are for all four Pandaboards, with the fans running, whether or
not a given Pandaboard was in use.



Fan-only power data:

Amperage at 5.0 V Fans Only
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So, the fans consume approximately 0.1 Amps * 5.0 Volts = 0.5 Watts

All 4 Pandaboards running idle:

Amperage at 5.0 V four boards idle
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The baseline power consumption for all four Pandaboards is approx. 1.35 * 5.0 =
6.75 Watts.



Section 5.1) Serial mode. One node, single cpu.

WREF Serial Single Core Elapsed Time
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Section 5.2) OpenMP. Shared memory, single node, 2 OpenMP threads

4000
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Section 5.3) Pure MPI. 4 single threaded MPI processes.

WRF MPI 4 ranks, 2 ranks per node
Test Case: em_b_wave
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Section 5.4) Hybrid. 2 MPI Ranks, 1 rank per node, 2 OpenMP threads per rank.

WRF HYBRID 2 MPI ranks, 1 rank per
node, 2 threads per rank
Test Case: em_b_wave
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Section 6) Conclusions and future work.

We have made a preliminary study of whether a complex application can be ported
to an existing ARM platform. The results for the WRF weather code is that it can be
ported with stunning ease.

We have shown performance on an existing ARM platform that is generally within a
factor of 2 or 3 of the lowest end of a sample x86_64 platform. Note that the ARM
platform under study has it’s cpu clock rate artificially limited to 700 Mhz out of a
possible 1.2 Ghz.

Power usage has been demonstrated to run the WRF test case with at most one or
two watts of power over the idle state of the sample ARM platform, with the base
idle power of that platform in the approximate 2 watts per node range.

Further work would consist of running the WRF test case on a more powerful
x86_64 system, to get more information about work per watt, and to investigate
further the use of floating point by WRF to perhaps obtain power per flop
information.

Note that one of the packages we installed on the ARM system was PAPI. We have an
in-house performance analysis tool based on PAPI that we have successfully ported
to the ARM platform. Further work will also consist of a very detailed performance
analysis comparison of the ARM platform and several levels of x86_64 performance
platforms.

We conclude that the ARM platform is a viable candidate for development into an
effective HPC system, especially when power consumption and ease of
programming are taken into account.



